Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors.

نویسندگان

  • A Nocera
  • G Alvarez
چکیده

Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators

Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...

متن کامل

Dynamical density-matrix renormalization group

The dynamical density-matrix renormalization group (DDMRG) method is a numerical technique for calculating the zero-temperature dynamical properties in low-dimensional quantum many-body systems. For the onedimensional Hubbard model and its extensions, DDMRG allows for accurate calculations of these properties for lattices with hundreds of sites and particles and for any excitation energy. The k...

متن کامل

Representing Spectral data using LabPQR color space in comparison to PCA method

In many applications of color technology such as spectral color reproduction it is of interest to represent the spectral data with lower dimensions than spectral space’s dimensions. It is more than half of a century that Principal Component Analysis PCA method has been applied to find the number of independent basis vectors of spectral dataset and representing spectral reflectance with lower di...

متن کامل

Sum-rule conserving spectral functions from the numerical renormalization group.

We show how spectral functions for quantum impurity models can be calculated very accurately using a complete set of discarded numerical renormalization group eigenstates, recently introduced by Anders and Schiller. The only approximation is to judiciously exploit energy scale separation. Our derivation avoids both the overcounting ambiguities and the single-shell approximation for the equilibr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E

دوره 94 5-1  شماره 

صفحات  -

تاریخ انتشار 2016